Transformers快速入门

199 0 0

Transformers 是由 Hugging Face 开发的一个 NLP 包,支持加载目前绝大部分的预训练模型。随着 BERT、GPT 等大规模语言模型的兴起,越来越多的公司和研究者采用 Transformers 库来构建 NLP 应用。 本教程旨在帮助 NLP 初学者快速熟悉 Transformers 库的使用方法,并且通过实例带领...

收录时间:
2025-06-21
Transformers快速入门

Transformers 是由 Hugging Face 开发的一个 NLP 包,支持加载目前绝大部分的预训练模型。随着 BERT、GPT 等大规模语言模型的兴起,越来越多的公司和研究者采用 Transformers 库来构建 NLP 应用。

本教程旨在帮助 NLP 初学者快速熟悉 Transformers 库的使用方法,并且通过实例带领读者一步一步构建自己的模型,完成各种 NLP 任务。

读者只需要熟悉 Python 语言即可,并不需要提前掌握 Keras、Pytorch 等深度学习包的使用。

数据统计

相关导航

大语言模型LLMBook

大语言模型LLMBook

本书更关注为大模型初学者提供整体的技术讲解,为此我们在内容上进行了大范围的更新与重组,力图展现一个系统的大模型技术框架和路线图。本书适用于具有深度学习基础的读者阅读,可以作为一本基础的大模型参考书籍。在准备中文书的过程中,我们广泛阅读了现有的经典论文、相关代码和学术教材,从中提炼出核心概念、算法与模型,并进行了系统性的组织与讲解。我们对于每个章节的内容初稿都进行了多次修正,力求表达的清晰性与准确性。
大规模语言模型:从理论到实践

大规模语言模型:从理论到实践

大语言模型(Large Language Models,LLM)是一种由包含数百亿以上权重的深度神经网络构建的语言模型,使用自监督学习方法通过大量无标记文本进行训练。自2018年以来,包含Google、OpenAI、Meta、百度、华为等公司和研究机构都纷纷发布了包括BERT, GPT等在内多种模型,并在几乎所有自然语言处理任务中都表现出色。2021年开始大模型呈现爆发式的增长,特别是2022年11月ChatGPT发布后,更是引起了全世界的广泛关注。用户可以使用自然语言与系统交互,从而实现包括问答、分类、摘要、翻译、聊天等从理解到生成的各种任务。大型语言模型展现出了强大的对世界知识掌握和对语言的理解。本书将介绍大语言模型的基础理论包括语言模型、分布式模型训练以及强化学习,并以Deepspeed-Chat框架为例介绍实现大语言模型和类ChatGPT系统的实践。